Showing posts with label heater. Show all posts
Showing posts with label heater. Show all posts

HEM Sealed Heater™ - Bench Test to 250°C

HEM Sealed Heater

In addition to optimizing liquid flow in space launches, more research and design facilities require a heater that will work in vacuum without outgassing the internal resistor and insulating materials.  Materials such as chromium and particles from the magnesium oxide begin to outgas.  Placing a vacuum barrier that keeps these particles in place and allows the operator to process without consistently replacing heaters, should increase productivity.

HEM Sealed Heater™/ Vacuum Chambers:
  • Temperature range of -55⁰C to +200⁰C Sheath Temperatures
  • Stainless steel 321 for heated zone, 304 Hem Sealed Cap   
  • 18AWG to 32AWG Kapton®/polyimide Lead wires 
  • 500Watt (± 10%) , 240 Volt, 1-phase   
  • He Leak Tested = 5 x 10¯⁹ ATM, CC/sec or better 
  • Hi-Pot Test 1K*2E 1 2 seconds (1500-2250VDC 0.5mA) 
  • Meg-Ohm 20 to 4,000+ @ 500VDC 

OUTCOME:

This test was performed in atmosphere within a 3.5 hour time frame.  The temperature was held each hour after the initial ramp to sheath temperature as noted in the graph below.

The temperature of 200°C was held for the 2nd hour and then the heater was powered ~250°C and held until the test was complete after about 3.5 hours.  

At lower temperatures of ~200°C, the Hem Sealed™ Cap reached 60°C keeping the vacuum integrity as per the maximum heater transition temp of 70°C.  The maximum temperature on the sheath tested was to 250°C with the Hem Sealed™ Cap at 79°C.

Special note; if a heater block or other device being heated, the optimal bore diameter vs heater diameter for the best heat transfer should be +.0020” to +.0025”.


BCE

+1 510-274-1990

Mini Clean Flow (MCF) – Large DI Water Heater

Mini Clean Flow (MCF) – Large DI Water Heater


BACKGROUND:

Deionized water application requiring the recirculation of 3 gallons per minute to reach 66ºC in 2 hours. NEMA 4 moisture resistant housing was required.

SCOPE:

MCF – Large DI Water Heater:
  • Temperature from 18ºC to 66ºC in 2 hours
  • 316 Stainless Steel All wetted parts
  • Pressure tested to 90 PSI
  • NEMA 4 Housing
  • RTD, 3-wire 100 ohm process sensor built-in near outlet
  • An additional TC for bottom temperature read
  • 16KW (± 10%) , 208 Volt, 3-phase
  • Mounting threads on the bottom of the assembly
  • Medium being heated: Deionized Water (DI Water)
  • Recirculate at 3gpm

OUTCOME:

The heater zones were individually heated at lower voltage then pressure tested up to 90 PSI at 20ºC - 25ºC. The typical ramp temperature for a bench test prior to shipping is 100ºC. The response time in an air medium environment was immediate as the temperature was achieved in under 20 minutes. All zones passed the recommended 700 VDC for 5 seconds on the Hi-Pot test prior to shipping. The heater was cleaned & packaged then sent out for delivery.

BCE

+1 510-274-1990

Copper Flange Heater for Gas Chromatograph

Copper Flange Heater
A gas chromatography application was brought to BCE involving a custom heater to ramp a cell end plate to 105°C. The customer had issues finding a solution due to the small surface area that needed to be heated (~ 0.75” diameter).  The requirement was a 25-Watt 120-Volt source, which resulted in a high resistance value (576 ohms) eliminating many heater options for this size and surface area.

Scope:
  • Heater plate to be 105°C 
  • Good temperature uniformity (+/- 1.5%C)
  • 25 W 120 V
  • 1/8” Plate thickness max
  • Geometry to allow for three tubes to exit
  • 0.75” Diameter
Outcome:

Since etched foil polyimide heaters were not an option for this application, BCE engineers designed a 110 copper plate with a rod heater welded within the groove.  The rod style heater allowed for a higher resistance value and was more robust compared to other types of heaters.  Additionally, the cold section and lead orientation can be easily modified by the customer to accommodate their assembly.  BCE’s Copper Flange Heater was able to efficiently heat the small surface and save the customer from an expensive assembly redesign.

For more information, contact BCE by calling 510-274-1990 or by visiting https://bcemfg.com

Vacuum Thermowell and Heater Assembly Simultaneously Heats and Monitors Semiconductor Wafer's Temperature

BTU requirement and temperature control are critical in the fabrication of silicon wafers in the semiconductor industry. Seldom can a product provide both a thermally effective means to heat wafers and simultaneously monitor their respective temperature. BCE’s Vacuum Thermowell and Heater Assembly achieves both of these criteria. Its aluminum thermowell houses a cartridge heater capable of supplying uniform heat, which can be monitored through an embedded thermocouple.

Furthermore, a flange at the end of the thermowell allows for easy installation into any vacuum port and provides an effective seal via its dovetail O-ring groove. An aluminum construction further ensures that the entire assembly remains lightweight and inexpensive to machine, reducing overall product cost. Moreover, multiple RTDs are hermetically sealed into the thermowell to allow for precise temperature monitoring of wafers and other components while maintaining vacuum integrity. They can be positioned and designed for any application, as can the thermowell. In order to prevent any outgassing and minimize release of contaminants into the chamber, the RTDs are sealed using BCE’s proprietary epoxy meeting NASA’s low outgassing spec and are available with Kapton leads.

Check out the BCE Vacuum Thermowell & Heater Assembly web page for more detail.

SuperCirc Heater: Revolutionizing Thermal Efficiency in the Petrochemical Industry

SuperCirc Heater
One of the most effective ways to increase heating of plant utilities is by pre-heating combustion gases supplied to burners. This can be challenging especially when a small footprint, high thermal efficiency and low maintenance are required in very harsh environments. In fact, BCE was approached by an international petrochemical giant seeking to replace their line of cartridge heaters used for this very application. This multi-billion dollar oil and gas company was primarily concerned with improving thermal efficiency and heater life as heaters needed to be replaced often due to exposure to corrosive materials and high watt densities. Replacing these heaters was proving to be quite costly and a quick remedy was needed to allow for greater profit generation.

SCOPE
  • The heater needed to meet the following requirements: 
  • Thermal efficiency needed to be tripled by reducing watt density 
  • 200W, 120V 
  • Heater sheath material capable of withstanding a corrosive environment 
  • Gas needed to be pre-heated to a temperature of 300°C 
  • 10 minute ramp time 
  • Gas flow needed not be exposed to any resistive material 
  • Built-in thermocouple for accurate temperature monitoring 
  • Easy installation into existing BSP threaded ports 
  • Heater body dimensions to not exceed 10” x 1” x 1” envelope due to space restriction 
OUTCOME

BCE proposed its SuperCirc heater as the most viable option for this dilemma. Its revolutionary fin design tripled thermal efficiency by tripling the heated surface area within the prescribed electrical and dimensional specifications. In effect, this resulted in decreasing the watt density from 36 W/in2 to 14 W/in2; greatly diminishing surface temperatures on the heater increasing heater life. Furthermore, not only was it able to ramp to 300°C in under 10 minutes exceeding customer expectations, its robust 316 stainless steel construction proved to be optimal in preventing heater degradation with exposure to harsh chemicals. Furthermore, an embedded, grounded, type K thermocouple provided accurate temperature monitoring, and the heater body inlet and outlet fit effortlessly into the existing BSP ports on customer site.

For more information, visit http://heater.beleilove.com or call 510-274-1990.

Kapton (Polyimide) Etched Foil Heating Elements

Kapton (Polyimide) Etched Foil Heating Element
Kapton (Polyimide) Etched Foil Heating Element.
According to Wikipedia, "Polyimides have been in mass production since 1955. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, e.g. high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton ..."

Kapton etched foil heating assemblies are constructed from a very thin etched foil circuit embedded between two layers of Kapton, or one layer of Kapton and some other material (such as alumina.) The result is a heater with features perfect for a wide variety of industries - from aerospace, to medical and scientific equipment, to research & development applications. 

Kapton heaters provide excellent heat transfer to adjoining surfaces with the release of minimal contaminants through the use of this very low mass, low outgassing, high dielectric material.  They provide very even heat distribution extremely fast heat-up and cool-down rates. Additionally, they can be constructed in just about any shape, size, wattage or voltage. They are also ideal for applications where distributed wattage (heating profile) is required. 

Furthermore, when the heater and ceramic insulator is bound in such a way to meet NASA’s low outgassing specification, Kapton heater assemblies are ideal for use in vacuum applications.

For more information, visit http://heater.belilove.com. Also, take a fast look at the video below.

Welcome to BCE

BCE (Belilove Company-Engineers) has over 60 years experience as a California based manufacturer, value added component integrator, and distributor serving the analytical instrumentation, semiconductor, photovoltaic, medical equipment, plastics processing, foodservice equipment, packaging, and aerospace industries. 

BCE offers custom electrical heaters, sensors, controls and custom vacuum feedthroughs for sale. Supported by their wealth of knowledge and experience, BCE will assist you with your electric heating, vacuum feedthrough, and ceramic substrate needs.

http://www.belilove.com | (510) 274-1990

What is an Atmospheric-pressure Chemical Ionization (APCI) Heater?

APCI heater
Diagram of APCI highlighting heating element.
For more information
on APCI heaters call BCE
at (510) 274-1990 or visit
Belilove.com/apci-heater

Mass spectrometers work by removing target components as ions in a gas phase, and then detect them as ions under high vacuum. In the development of liquid chromatography – mass spectrometry (LC-MS) a significant problem arises from the vaporization from liquid mobile phase when large amounts of gas can be introduced into the mass spectrometer (MS), and thus decreasing the level of vacuum and impinging the ability of ions to reach the detector.

Dealing with the mobile phase and preventing the introduction of the smallest amounts of gas is critical in LC-MS.

Atmospheric-pressure Chemical Ionization (APCI)

One solution is to use Atmospheric-pressure Chemical Ionizationa specific type of chemical ionization. Atmospheric-pressure Chemical Ionization vaporizes solvent and sample molecules by spraying the sample solution into a heater (approx. 400 °C) using a carrier gas, such as Nitrogen. The solvent molecules become ionized via corona discharge and generate stable reaction ions in the mass spectrometer.

An APCI heater is a specialty electric heating element that has a resistance temperature detector (RTD) built-in for accurate temperature control, a .016” ID capillary tube in the center of the heater axis and a maximum operating temperature is up to 400°C.  This assembly also comes complete with the connector plug.

For more information on APCI heaters contact BCE at (510) 274-1990 or visit http://www.belilove.com/apci-heater.


Experience is Key When Applying Custom Electric Heating Elements

Electric Heater Design Expert
Heater design expertise is
readily available from your
Technical Sales Rep
Designing and applying custom electric heating elements are best completed and accomplished through the proper application of the right resources. One of the most available and important sources of high level technical knowledge is a vendor's local Technical Sales Rep. Their assistance is readily available and their consultative value is very high.  Bringing in a Technical Sales Rep will have a big bearing on a successful task or project completion.

Many Technical Sales Reps are degreed engineers. If they don't have an engineering degree, you'll find they have years of empirical application knowledge from working on many, many projects. You'll also find that many have worked at manufacturer's factories and know the in's and out's of production as well as anyone.

Consider these elements the Technical Sales Rep brings to your thermal system design project:

Custom heating element
Watt densities? Thermal profiles?
Distributed wattage?
There's a lot to know.
Product and Application Knowledge: Your Technical Sales Rep has probably seen hundreds, if not thousands, of custom heating requirements. They deliver a mental encyclopedia of product offerings, application insights, and broad spectrum of capabilities. They also have information regarding what products are in development that can give you the competitive edge. Much of this information resides in the Reps head, and is not generally accessible to the public via the Internet.

Experience: As a project engineer, the selection and incorporation of a new heater design may be all new to you. You may be treading on fresh ground with little or no experience in the nuance of electric heaters. There can be real benefit in connecting to a knowledgeable source, with years of past design and application experience, that will save you time, money, and effort.

Access: Technical Sales Reps work closely with a variety of manufacturers, and may even have in-house prototyping or manufacturing capabilities at their own companies. This gives you, the design engineer, a connection to “behind the scenes” manufacturer contacts with essential information not publicly available. The technical sales rep knows people, and makes it his/her business to know the people that can provide answers to your electric heating and custom thermal system application questions.

So, in this age of doing your own research and self-educating on the Internet, let's not forget the importance of a face-to-face visit with someone who can really help - your Technical Sales Rep. You'll be very pleased with the information they can provide to make your job easier and the quality of your product better.

Have a custom heater job? Contact BCE now!
www.belilove.com(510) 274-1990

NEW BCE Clean Flow Electric Mini-Heater with Probe Assembly

Check out the new design mini heater designed to heat flowing gases and liquids. Designed and developed by BCE.

Applications

Baking, Drying, Laminating, Metal Working, Packaging, Plastic Welding, Preheating, Sealing, Soldering, Shrink Fitting, Synthetic Fabric Sewing.

Mini Clean Flow Electric Heater:
  • Designed for heating of clean gas. 
  • Gas flow passes over an enclosed heated body; 
  • not exposed to resistive elements (ni-chrome). 
  • All parts exposed to gas flow are constructed of 
  • 304 stainless (other material available). 
  • High temperatures and ranges are available ask a 
  • BCE engineer.