Immersion Heater Application Note - Cooling Tower Basin Freeze Protection

screw plug heaters
Screw plug heaters used as basin heaters on cooling towers.
Industrial electric immersion heaters, more specifically "screw plug" immersion heaters are used in many commercial and industrial applications for keeping gases and liquids flowing at required temperatures. Cooling towers use screw plug immersion heaters for freeze protection of the cooling tower basin.

Cooling towers are an important part of many HVAC systems, providing comfort or process cooling across a broad range of applications. They function to remove system heat by dissipating it to the atmosphere through an evaporative process. They are common in many industries such as chemical processing, power plants, oil refining, and steel mills, as well as many other manufacturing processes where process cooling is required. Another huge market for cooling towers are commercial buildings including airports, shopping malls, hotels, casinos, conference centers, and
cooling tower with basin heater
Cooling tower diagram with basin heater.
medical centers.

The purpose of a basin heater is to prevent water from freezing in the cooling tower basin during periods of shutdown or standby operation.

After the water passes from the top of the tower through the distribution system, it cascades down to the collection basin at the base of the tower structure. From the collection basin, the cool water can be pumped back into the system and begin the process all over again.

As a general rule, basin heaters are normally sized to maintain a 40°F basin water temperature at a 0°F ambient condition. When the system is running, the basin heaters should be powered off as the heater isn't required due to agitation and the heat load picked up during the cooling cycle. The heaters do need to be operational when the cooling tower enters standby or is shutdown for maintenance though. Thermostats, or other on/off controls, are used to tun the heaters on below 40°F  and when the cooling tower pumps are not running. The basin heaters are intended only to keep the basin water from freezing and not intended to act as freeze protection for other pumping or filling components.

NEW BCE Clean Flow Electric Mini-Heater with Probe Assembly

Check out the new design mini heater designed to heat flowing gases and liquids. Designed and developed by BCE.


Baking, Drying, Laminating, Metal Working, Packaging, Plastic Welding, Preheating, Sealing, Soldering, Shrink Fitting, Synthetic Fabric Sewing.

Mini Clean Flow Electric Heater:
  • Designed for heating of clean gas. 
  • Gas flow passes over an enclosed heated body; 
  • not exposed to resistive elements (ni-chrome). 
  • All parts exposed to gas flow are constructed of 
  • 304 stainless (other material available). 
  • High temperatures and ranges are available ask a 
  • BCE engineer.

Ceramic Thick Film Electric Heating Elements

Need a high performance electric heater in a low mass, low profile package? Need to put high watt density a small space? Or maybe you need to distribute wattage disproportionately to an irregularly shaped part?  Thick film ceramic heater technology is the answer!
ceramic thick film heaters
Ceramic thick film heaters.

Ceramic thick film heaters are easily customized into a variety of shapes and sizes, and provide excellent heat transfer. Long life is assured by precise thermal matching between ceramics and resistor traces.

The heater ceramic substrates provide excellent hardness, wear resistance, and compression strength. The physical properties of the ceramic also provide optimal thermal conductivity and excellent uniformity. Thick film ceramic heaters are perfect for application in analytical equipment, life science equipment, mass spectroscopy, medical devices, semiconductor processing, packaging machines, and in applications ultra pure and chemically aggressive media.

Flexibility in Design:
ceramic thick film heaters
Custom shapes
and designs.
  • Virtually unlimited in shape or size.
  • Single or double sides, one or two layers per side.
  • High purity applications no problem.
  • Precise control and uniformity via custom watt densities and patterns.
  • Distributed wattage for ideal application of heat to part with minimal losses.
  • Multiple heating zone capabilities for more precise control.
  • Available in virtually any voltage, AC or DC.
  • Integrated sensors including thermistors, thermostats, thermal fuses, and printed RTD's.
  • Wide variety of lead configurations conforming to shock and vibration, vacuum and purity standards.
For more information contact:

21060 Corsair Blvd
Hayward, CA 94545
Phone: (510) 274-1990
Fax: (510) 274-1999