Friday, March 27, 2020

What Are Circulation Heaters?

Circulation HeaterCirculation heaters are the perfect solution for generating heat and enhancing normal immersion heaters performance. They are designed to heat pressurized circulating fluids and to provide effective, controlled heating to water, oil, steam and other gases. Circulation heaters are composed of all-in-one units with a heater mounted inside an insulated tank. They are made of a flanged or a screw plug immersion heater that is inserted into a pressure vessel or a pipe body. Heaters have inlet and outlet piping where the liquid or gas goes through the tank in order to reach the desired temperature.

KEY FEATURES

  • Standard sizes: 1.25” NPT screw plug size to 14” diameter
  • Steel vessels fitted with 150 lb. flanges
  • Thermal insulated vessels
  • Custom unit sizes: up to 44” nominal pipe size
  • Custom-designed to meet your specifications
  • Special sizes, wattages, and materials are available upon request
  • Units are available with larger vessels and heavier flanges
  • Supplied with stainless steel parts and special design terminal boxes use in high temperature conditions

BENEFITS

  • Easy to install
  • Compact
  • Clean
  • Durable
  • Highly energy efficient
  • Provide fast response and even heat distribution
  • Provide greater wattage in a smaller heater bundle
  • Provide maximum dielectric strength
  • Reduce heat loss from the vessel
  • Protect and prevent thermal insulation
  • Easy mounting support
  • Suitable to general purpose terminal enclosures, weather or moisture resistant terminal enclosures, and unsafe or explosion proof locations
  • Compatible with standard industry piping and safety standards
  • Designed and built for safety


FACTORS

Please consider the following factors in order to select the proper circulation heater:
  • Operating temperature
  • Heating element watt density
  • Sheath material (corrosive or non corrosive)
    • Temperature of the corrodent
    • Degree of aeration of exposed corrodent
    • Velocity of the corrodent  

REGISTRATION

Circulation heaters are sometimes considered as boilers or pressure vessels according to the:

  • Heated fluid
  • KW rating
  • Size of vessel
  • Operating pressure
  • Outlet temperature

Where applicable, registration requirements are imposed by law and according to the installation location.

EXTRA FEATURES

  • Available built-in high limit controls and thermostats
  • Standard built-in thermostats: Single pole device limited to 240V up to 30 amps
  • For heater voltage over 240V, or heater currents over 30 amps, or three-phase supply, the thermostat is used for pilot duty only and is not factory wired to the elements.

Please call BCE at 510-274-1990 if you have requirements for circulation heaters. You can also get additional information from the BCE website here.

Monday, February 24, 2020

Industrial and OEM Electric Heating Elements

Electric Heating Elements
Electric heating elements are used to provide localized heat for people, animals, and equipment. Because electricity is widely available, it's a logical source of energy for the creation of heat. Electricity is converted to heat by the resistance to electrical current flow by a conductor. This process is known as Joule heating or Ohmic heating. The transfer of heat from heating element to the workpiece needing to be heated is done through conduction, convection, or radiation. Electric heat is simple, clean, and efficient. Unlike other forms of energy to create heat, such as fossil fuel or nuclear sources, there are no concerns with flammable fuels, radioactive materials, or harmful by-products.

There are many places where electric heaters comes in touch with our lives each day. They are used to keep living spaces warm for human beings and animals (commonly referred to as "comfort heating"). Electric heating elements are found in common home appliances such as toasters, stoves, and hair dryers. But beyond the day-to-day consumer applications, electric heaters are also ubiquitous in industry. Industrial heating elements are critically important to many manufacturing processes, wether as an equipment component (OEM heaters), or directly used in the the processing of raw materials (industrial electric heaters).

In industry, electric heating elements are commonly used in the manufacture of electronics, semiconductors, medical devices, food equipment, plastics equipment, pharmaceuticals, glass, ceramics, primary metals, aerospace equipment, and HVAC equipment.   While the industries that use electric heaters vary widely, the application of electric heaters narrows to the heating of flowing fluids (which include gases and air) or the heating of a solid metallic, or non-metallic, workpiece.

Types of Electric Heaters Used in Industry and Original Equipment Manufacturing


While the modes of transferring heat from on body to another will always be conduction, convection, or radiation, the mechanical and physical properties of industrial heaters change dramatically, depending on the media being heated, the physical and limitations of the application, and the application's temperature requirements. The following are the most common types of industrial and OEM heating elements used.

Tubular Heating Elements

Tubular elements are a common form of electric heater. Essentially a metal tube with resistance wire and electrical insulation inside, tubular elements can be configured into almost uncountable shapes and sizes.

Cartridge Heating Elements

Cartridge heaters provide localized heat to restricted work areas requiring close thermal control. Dies, platens and a variety of other types of processing equipment are efficiently heated.

Flexible Heating Elements

Flexible Heaters are made from a variety of materials such as Silicone rubber, Kapton, Mylar, or Neoprene and have etched foil or wirewound resistance elements. Fast responding with excellent heating profiles, these heaters solve many tough equipment heating challenges. Custom shapes and terminations are designed to suit. Rapid prototype service available.


Ceramic Heating Elements

Composed of high temperature materials such as alumina ceramic substrates. The metal heating resistance element is thickfilm technology or wire.

Thick Film Heating Elements

A process of depositing a resistor “trace” of tungsten paste on top of a ceramic part in a process very similar to screen printing. The deposition process allows for close control of thickness and width of the resistor, thus accurately controlling the conductor resistance, wattage, watt density, and uniformity of the heated part.

Wednesday, January 8, 2020