Wednesday, April 14, 2021

200mm 8” Copper Molybdenum (CuMo) Vacuum Heater Chuck

Vacuum Heater Chuck

BACKGROUND

Having better uniformity specifications than aluminum with a higher temperature threshold, the Copper Molybdenum (CuMo) Vacuum Heater Chuck displayed stellar performance during ramp-up and heater stabilization. Thermal conductivity (TC) typically 210 to 255 W/m.K (with rolling process) compared to Aluminum at 205 W/m.K. Using a compressed style configuration, we utilized a 304 stainless steel bottom housing since the uniformity requirement was top end specific. This increased heat transfer towards the top CuMo side while reducing customer cost.

200mm 8” Stainless Vacuum Heater Electrical and Performance Specs:

  • High temperature up to 650°C
  • Temperature uniformity 550⁰C (+/-3⁰C)
  • 108 mtorr, pass best config. baseline (~0.4 torr/min)
  • 120 Volt or 208 Volt Up to 750 Watt (+/-10%)
  • External thermocouple optional
  • Surface Finish: As per customer specification
BCE
510-274-1990

Saturday, January 16, 2021

150mm 6” Stainless Vacuum Heater Chuck

150mm 6” Stainless Vacuum Heater Chuck

BACKGROUND

An ALD chamber needed to be upgraded to a higher temperature platen, beyond the limits of aluminum.  The application involved reducing the cost of a replacement vacuum heater while keeping the heat transfer and uniformity the same or better in vacuum.  Vacuum integrity was crucial to the success of the project since it needed to comply with the existing vacuum heater chuck being replaced. 

SCOPE

  • 150mm 6” Stainless Vacuum Heater following specs: 
  • Temperature up to 450°C (+/- 1%) 30 minutes or less  
  • 304 SS 2.75 CF Flange Feedthrough with Viton O-ring  
  • 108 mtorr, pass best config. baseline (~0.4 torr/min) 
  • 120 Volt, 950 Watt (+/-10%), 8 Amp 
  • Thermocouple built-in to heater source
  • Surface Finish: 32 Ra 

OUTCOME

  • BCE 6” Vacuum Heater Chuck
  • Medium vacuum compatible
  • Leak-up rate test for the best tool config (~0.4 torr/min).
  • Good temperature uniformity over 6” dia, up-to 450°C.
  • Within ± 2.5°C over most of the wafer, except the edges of a 6” dia.
  • Repeatable and Predictable temperature  ramps up-to 450°C

BCE
510-274-1990

Sunday, January 10, 2021

120-volt Socket Vacuum Feedthroughs

120-volt Socket Vacuum Feedthroughs

Vacuum equipment usually requires transferring electrical currents, voltages, and signals or fluids through the equipment walls. BCE provides a wide range of feedthroughs that serve as solutions to various requirements for vacuum equipment installations.

One unique design is the 120-volt Socket Feedthrough. It's designed to replace bulky power wiring and reduce clutter located in and around a vacuum chamber.  A three-slot single female receptacle precisely fitted into an adapter with a KF50 flange or 1-1/4" NPT connection. This feedthrough is an optimal solution to reduce the size and increase efficiency. With this design, users can relocate the power system to the chamber's exterior, increasing the available space within the vacuum chamber while maintaining the desired vacuum rating.

BCE's epoxy chemical adhesion, the most robust mechanism of any adhesive bond, make the seal possible.  The viscoelastic nature of the epoxy absorbs vibrations and allows for a better performance by reducing fatigue.

BCE's innovative product is just what you need for a fast and easy 120-volt socket available on the other side of the vacuum wall. They provide a standard 120V, 15 amp socket for a quick, reusable connection. Custom configurations are available.

BCE
510-274-1990

Friday, December 18, 2020

Saturday, December 12, 2020

Starwound Cable Heaters

Starwound Cable Heaters

Cable heaters are drawn, elongated, compacted heating elements with the electrical conductor protected inside a metallic sheath with magnesium oxide electrical insulation. Cable heaters are formed straight from round or square tubular stock. Once drawn and compacted, they are used as straight cable in some applications or assembled into various shapes, including star wound or spiral wound patterns. These configurations provide increased surface area, optimal heat transfer, compactness, and a fast heat up and cool down because of their small mass. Alloy 316 stainless steel cable heaters are commonly used in clean environments and where moisture or contaminants are present.

Starwound cable heaters provide optimal heat transfer of fluids (air, gases, liquids), yielding optimal heat distribution. The heater's flexibility allows for winding patterns that distribute power (wattage) precisely as required and generate high temperatures in tight areas. Starwound cable heaters placed inside pipes and ducts create a turbulent flow path, enhancing heat transfer and efficiency.


  • Small diameter, low mass heater allows for fast heat up/cool down.
  • Starwound element creates turbulent flow, resulting in more efficient heating.
  • Sheathed stainless steel element for safely heating clean or impure gas, air, or liquid streams.
  • Broad heater configuration is adaptable to any application.

BCE
510-274-1990

Wednesday, November 25, 2020

Saturday, November 14, 2020

HK 300mm Compressed Heater Chuck

HK 300mm Compressed Heater Chuck

 BACKGROUND

To reduce the overall cost for an existing application, BCE developed a 300mm aluminum heater chuck that is un-brazed utilizing the compression of two plates with countersink set screws. The heater surface specs were 0.003” flatness at a 0.005” parallelism. Using a 208-volt power supply at 9.7ohm, start @ 25°C temperature and ramped from 100°C to 465°C in 23 minutes. 

SCOPE

Aluminum Heater Chuck needed to satisfy the following:

  • Achieve temperature up to 435°C  @ +/- 2% or better 
  • Internal element must be able to withstand temperatures up to 600°C
  • Anodized surface for electrical isolation 
  • 208 Volt, 9.7 Ohm, 4,460 Watt (+5% / - 10%) 
  • Thermocouple bore hole to be placed at the center (variable) 
  • 4 point temperature profile on the top surface of the heater 
  • Used an infrared sensor for each 4 point locations
  • FINISH: Hard coat anodize per MIL-A-8625F, Type 3 Class1 Hard-coat thickness  

OUTCOME

BCE produced a highly effective high 300mm heater with exceptional uniformity better than the proposed 435°C (+/-2%).  After the initial ramp, the heater maintained 435°C (+/- 1%) as per the chart below (Temp profile #5). 

300mm heater chuck
BCE
510-274-1990