Thursday, April 11, 2019

Custom Engineered Extrusion Die Heater Reduces Downtime, Increases Production

Extrusion Die Heater
Extrusion plays an important role in the plastics industry. Unlike molding, extrusion is a continuous process that can be adapted to produce a wide range of finished or semi - finished products, including pipes, profiles, sheets, film and wire covering. Extrusion machines are fitted with a variety of dies.

Dies often require external heating to keep the plastic viscous. This is accomplished by using electric cartridge heaters inserted in holes in the die, or by other custom electric heating elements that are mounted to the die.


A plastic extrusion customer approached BCE with a problematic heater that, upon its failure, would render the entire line out of commission. Not only did the failed heater stop production, but it also was difficult and time consuming to replace.

After reviewing the application, BCE engineers quickly determined the heater was designed as a consumable part with limited operational life, and little to no serviceability. BCE was going to have to design a replacement heater that would not only be a drop-in retrofit, but would be built to last and easy to replace if needed.

  • The heater needed to satisfy the following criteria: 
  • Continuous operating temperature of 200 °C.
  • Minimal temperature deviation: ±2 °C.
  • 10-32 tapped holes for custom terminal enclosure.
  • Compatible with proprietary mounting fixture.
  • Robust heater design to support long term continuous heating at 480 V in series .
  • Heater plate designed for ease of access and serviceability.


After generating all the necessary drawings and 3D models, BCE’s engineers successfully designed and manufactured a circular custom heater assembly to replace the customer’s original part. Custom tubular heaters were embedded into a machined aluminum ring. The positioning of the heater terminals were key to the ease of replacement and had to be carefully engineered.

With this new, improved design, BCE was able to increase heater performance and efficiency, as well as  guaranteeing  temperature uniformity to within 2 °C around the periphery. Additionally, BCE modified the heater terminal electrical insulation to adequately support 240V (480V in series). Finally, the aluminum ring enclosure was designed to allow fast and easy replacement of the tubular heating elements, reducing down time and lost production.

For more information, contact:

Sunday, March 31, 2019

New Epoxy Compounds Give Researchers and OEM's Design Freedom in Specifying Vacuum Feedthroughs

OEM feedthrough
OEMs can no get a feedthrough to fit their design criteria.
Scientists and researchers are constantly challenged to come up with better ways to read data in a vacuum environment. Traditional ceramic and glass-to-metal vacuum feedthroughs do not offer design flexibility. Unique control and data signals must pass through the wall. In addition to passing electrical power and control signals, fiber optic cables and pneumatic tubing may be included. Always changing variables, such as the number and types of connectors, unique geometries, and limited available space, make finding an off-the-shelf feedthrough difficult. This has traditionally forced designers to compromise and specify a feedthrough with some, but not all, of the desired specifications. 

epoxy feedthrough
Clear epoxy feedthrough with ribbon connector.
This reality has led to significant development gains in custom epoxy feedthrough. Epoxy feedthroughs overcome design constraints. New epoxy properties rivaling ceramic and glass performance have been developed. High performance, clear epoxy potting opens the door for researchers to specify the exact number and type of wires, optical fiber cables, or any other insert that they require. Epoxy feedthrough manufacturers can provide a virtually limitless variety of wires, cables, or tubes along with the added benefit of fast prototyping and small production runs — perfect for the research and manufacturing community. 

Flanged feedthrough
Flanged feedthrough with epoxy potted fiber optic cable.
With the development of custom epoxy feedthroughs medical device companies, analyzer manufacturers, laboratories, aerospace companies and other R&D facilities can design their equipment based on optimum size, cost and performance, and not be forced to compromise by the limitations of ceramic and glass-to-metal feedthrough. Because of the constant pressure on "better, faster, smaller" vacuum equipment researchers and OEM designers, it's clear that epoxy feedthroughs provide flexibility and options for more efficient and creative design.

For information on epoxy vacuum feedthroughs, contact: 

(510) 274-1990

Tuesday, March 26, 2019

Feedthroughs Used for Penetration of Vacuum and Pressure Vessels

Many types of OEM equipment, including medical, analytical, semiconductor, aerospace and laboratory test equipment, require a leak-proof penetration into a vacuum or pressure chamber. The device that accommodates this penetration is referred to as a feedthrough (sometimes spelled "feedthru"). For the most part feedthroughs allow electrical currents or voltages into the vacuum or pressurized area. There are also many other non-electrical requirements for pressure/vacuum vessel penetration. Some examples of non-electrical penetrations are fiber-optic, fluid tubing bundles, and process control sensors such as thermocouples.

Multi-pin Threaded or Flanged FeedthroughsMulti-pin Threaded or Flanged Feedthroughs

Multi-pin feedthroughs have circular flanged or threaded connectors for moderate pin density. They are typically offered with differing numbers of pins (often, 3, 5 or 7) and rated to 3.5 amps and 500 volts per pin. There are both single-ended and double-ended versions which offer a connector for the air side or both air and vacuum side connectors respectively.

Thermocouple FeedthroughsThermocouple Feedthroughs

A thermocouple feedthrough is an electrical vacuum feedthrough commonly used for systems involved in temperature measurement. The thermocouple feedthrough itself doesn’t measure temperature, but is used to conduct the voltage signal from the vacuum to an external device. These are suitable for use in ultra-high vacuum applications.

High Power FeedthroughsHigh Power Feedthroughs

High power electrical feedthroughs transmit high current and/or high voltage into a vacuum system. Variations of power electrical feedthroughs offer a range of current and voltage.

Epoxy Potted Feedthroughs
Epoxy Potted Feedthroughs

Epoxy vacuum feedthroughs offer the best application flexibility, they are cost competitive, and they have a high vacuum performance for today’s fast moving markets. Clear epoxy feedthroughs allow for the visual inspection of your components. They are board mountable with high vacuum performance and very competitive pricing compared to ceramic and metal seals.

Fiber Optic FeedthroughsFiber Optic Feedthroughs

Fiber Optic Feedthroughs provide the interface between fiber optics and UHV technology. They allow fiber optic cables are designed for vacuum applications requiring fiber optic connections from inside a vacuum system to external equipment.

Fluid FeedthroughsFluid Feedthroughs

Also referred to as fluid feedthroughs, they are designed for the transmission of gases or coolants into high and ultrahigh vacuum environments.  Generally constructed from 300 series stainless steel, they are available in single or multi-tube configurations.

Many accessories are available to be used in conjunction with the wide variety of vacuum feedthroughs. These included vacuum connectors, connectors, insulated wire, cable assemblies, insulators, and spacers, just to name a few.

Specialized feedthroughs may be needed if your application includes cryogenic or very low temperatures, high temperatures, aggressive chemicals, or high pressure. Contact an experienced manufacturer who specializes in vacuum feedthroughs to discuss which feedthrough will best meet your needs. A company worth their salt should be able to discern which would be the best fit with minimal hassle.

Friday, March 8, 2019

Twin Type-C Thermocouple, High Temperature, High Vacuum Feedthrough

Twin Type-C Thermocouple FeedthroughBACKGROUND

An application was presented to BCE in the semiconductor equipment industry for a high temperature, high vacuum thermocouple (TC). There was space limitation with a requirement for a multi-point TC to sense a very small insertion dimension. The TC probe area must be able to bend to allow the sensor tip to penetrate the temperature sensing zone. The BCE engineers and technicians were ready for the challenge with their experience in ceramic-to-metal sealing and high temp sensors.

  • Twin Type-C Thermocouple Vacuum Feedthrough needed to satisfy the following criteria:
  • <1425°C continuous operating temperature in probe area
  • Two independent type “C” thermocouple probes
  • KF16 Flange
  • Vacuum rating: 10 9̄ ATM-CC/Sec
  • Feedthrough Seal Temp: -25°C to 300°C
  • Probe section needs to be bendable and vacuum compatible with SEMI standard

BCE designed an effective High Temperature Vacuum TC that was delivered for prototyping and customer testing. The application requirement was met and the function was sound. All tests performed prior to shipping were completed at BCE. A standard operating procedure (SOP) was finished and the part is production ready.

More information on this BCE product can be found at this link. 


Thursday, February 28, 2019

High Temperature Vacuum Feedthroughs

Thermocouple FeedthroughThermocouple/Feedthrough Assemblies

Thermocouple Feedthroughs are used in many vacuum applications for temperature measurement. Thermocouples create a voltage signal from inside the vacuum system to external measuring instruments. BCE offers several standard thermocouple feedthrough designs as well as custom designs to meet your exact needs.

Nine pin circular feedthroughs

9 Pin Vacuum Feedthroughs

Nine pin circular feedthroughs (often called instrumentation feedthroughs) are commonly used for the transmission of low power electrical signals. They are designed for applications where typical Subminiature Type-D connections will not fit, or where there is little space. The circular geometry allows the installation of this feedthrough into very small vacuum flanges. They are often used in instrumentation applications such as semiconductor processing, electron microscopy, and a variety of analyzers.

BCE designs and builds high temperature vacuum feedthroughs for OEM and R&D. Contact them by calling (510) 274-1990, or visit

Monday, February 25, 2019

OEM Equipment Manufacturers: Look Toward the Experienced Sales Engineer for Project Success

OEM heater and feedthrough sales engineer
Original Equipment Manufacturers (OEMs) who work closely with vendor sales engineers in the design of assembly components (such as electric heating elements and vacuum feedthroughs) gain a valuable competitive advantage. By understanding what these professionals have to offer, and taking advantage of their skills, OEM designers end up with better project outcomes.

Sales engineers are a readily available resource of application knowledge. Unlike information pulled from the Internet, sales engineers possess real-time product information. They are also exposed to many different product applications and are a wealth of tacit knowledge. All readily available for sharing with their customers.

OEM design engineers often find themselves sailing in uncharted waters. In the application of electric heaters or feedthroughs for instance, designers don't always have a full grasp of heater or feedthrough design constraints. When these situations occur, the heater sales person provides a real benefit in teaching and advising the designer what is possible.  Additionally, many sales engineers have access to unpublished product and application information, which can be hugely important when attempting to build a leading edge product.

Of course any solutions proposed are likely to be based upon the products sold by the representative, but the best sales people will share the virtues of their products openly and honestly. The best sales engineers will even admit when they lack the product or experience to solve the problem, but even in this situation, you can be sure their perspective will still be of value. The goal is to build a long-term, trusting relationship - one of value to both parties. Sales engineers are in the business of dealing with people and making the important connections between customers and manufacturers. They make it their business to know what’s going on with products, companies and industries.

As an engineer or purchasing professional responsible for the design and manufacture of OEM equipment, know that working closely with a vendor sales engineer will save you precious time and greatly improve the likelihood of successful project outcomes. Their success, and your success, go hand-in-hand.

Wednesday, February 6, 2019

Electric Heating Elements and Electrical Feedthroughs for OEM Applications

BCE offers OEM (original equipment manufacturers) custom electric heaters, feedthroughs and BCE OEM customers benefit from decades of thermal design and applications experience. With a reputation for fast prototyping, quick turnaround for pre-production runs, and an eye for cost-effective design, equipment manufacturers quickly discover that find BCE is a long-term, highly valued supplier/partner.

OEM Equipment Markets
  • Aerospace
  • Semiconductor
  • Analytical Instruments
  • Photovoltaic
  • Medical Equipment
  • Plastics Processing
  • Foodservice Equipment
  • Packaging

OEM Electric Heaters & Feedthroughs: Price, Delivery, Performance