Monday, May 20, 2019

BCE Mini Clean Flow: An OEM Customizable Clean Gas and Fluid Heater

Mini Clean Flow
Click on Mini Clean Flow drawing image for a larger view.

The BCE Mini Clean Flow electric heater is a very compact, fast responding electric heating element for liquids and gases used in the fuel cell, bio-med, laboratory, food, and pharmaceutical industries. Typical applications include: Parts cleaning; Critical fluid heating; Solvent replacement; Biomass extraction; Bio reclamation; Semiconductor processing equipment; and photoresist materials.
Mini Clean Flow
Click on Mini Clean Flow drawing image for a larger view.

The Mini Clean Flow is often customized to suit the exact physical, mechanical and operational requirements of the application. BCE engineers are ready to provide application assistance to design and apply the perfect Mini Clean Flow for your needs.
Mini Clean Flow
Click on Mini Clean Flow drawing image for a larger view.

These examples are just a few of the many custom configuration BCE has developed for customers.
Mini Clean Flow
Click on Mini Clean Flow drawing image for a larger view.
For more information about custom electric heating elements, contact BCE by calling (510) 274-1990 or by visiting

Saturday, April 20, 2019

High Amperage Electrical Feedthrough

High Amperage Electrical Feedthrough

A customer involved in lithium ion research approached BCE in need of a high amperage feedthrough that also met their packaging (size) requirements.

While the customer had no problem finding high amperage feedthroughs, or feedthroughs that met their size requirement, they could not find an acceptable electrical feedthrough that satisfied both.

BCE is known for designing to customer specifications, allowing engineers the freedom to build their systems according to their plans, and not having to make design sacrifices because of hardware limitations. This application is an excellent example of BCE's capability.


After a comprehensive application review with the customer, BCE went to work. Designs were completed in a few days and prototypes were completed in a few weeks. After preliminary tests and designs, a final prototype High Amperage Feedthrough was delivered for customer evaluation.

After thorough testing, the customer agreed that the application requirement was precisely met and the feedthrough functioned perfectly.

With the feedthrough now in production, all customer specified tests are performed prior to shipping and completed at BCE. Production and testing are controlled by a jointly developed standard operating procedure (SOP).

While this feedthrough was designed for a single, specific use, the underlying construction is designed to easily accommodate changes. Nearly every feature is customizable, including conductor type and gauge, flange type and size, component materials, and electrical rating.

The BCE High Amperage Feedthrough needed to satisfy these customer criteria:
  • 150 Amp 30 Volt
  • Custom KF50 Flange 
  • Vacuum rating: 10-6 ATM-cc/s 
  • Feedthrough Seal Temp: -10 C to 60 C
  • Able to withstand the weight of the heavy gauge wire

Friday, April 19, 2019

Miniature Cartridge Heaters

Miniture Cartridge HeaterMiniature cartridge heaters are roughly defined as electrical cartridge heaters 3" or shorter in length, having diameters of 1/8", 5/32", or 3/16", and providing high watt densities (although low to medium watt densities are available). Their exterior construction is usually 304 or 316 stainless steel, with internal nickel chromium (Nichrome) resistance wire. A variety of electrical lead wire configurations to meet the needs of the application are available. Because of their swaged (machine compressed) construction, miniature cartridge heaters provide a high level of shock and vibration resistance, as well as good dielectric strength.

Miniature cartridge heaters are used to provide localized, concentrated heat to small component parts or in restricted work spaces. Dies and platens, as well as a variety of other types of OEM processing machinery, are efficiently heated by miniature cartridge heaters.

Typical OEM Uses for Miniature Cartridge Heaters
  • Gas monitoring equipment / analyzers
  • 3D printing machine
  • Medical equipment and devices 
  • Ink printing and labeling machines
  • Mass spectrometers
  • Analytical process instrumentation
  • Optical equipment
  • Gas chromatography
Operating temperatures as high as 1200 deg. F can be attained with careful attention paid to the application. Miniature cartridge heaters are almost always mounted in a close tolerance holes or swiftly circulating fluids because their often very high power densities would cause them to self-destruct if run full power in open air or stagnant fluids. As with all cartridge heaters, lifespan is directly proportional to the success or ability to move the heat from the internal nickel chromium resistance wire into the heated part or process. Therefore, careful consideration must be giving to hole tolerances or process flow rate before application.  It is common for miniature cartridge heaters to include internal thermocouples for temperature control and limiting purposes.

For more information about miniature cartridge heaters, contact BCE.

Thursday, April 11, 2019

Custom Engineered Extrusion Die Heater Reduces Downtime, Increases Production

Extrusion Die Heater
Extrusion plays an important role in the plastics industry. Unlike molding, extrusion is a continuous process that can be adapted to produce a wide range of finished or semi - finished products, including pipes, profiles, sheets, film and wire covering. Extrusion machines are fitted with a variety of dies.

Dies often require external heating to keep the plastic viscous. This is accomplished by using electric cartridge heaters inserted in holes in the die, or by other custom electric heating elements that are mounted to the die.


A plastic extrusion customer approached BCE with a problematic heater that, upon its failure, would render the entire line out of commission. Not only did the failed heater stop production, but it also was difficult and time consuming to replace.

After reviewing the application, BCE engineers quickly determined the heater was designed as a consumable part with limited operational life, and little to no serviceability. BCE was going to have to design a replacement heater that would not only be a drop-in retrofit, but would be built to last and easy to replace if needed.

  • The heater needed to satisfy the following criteria: 
  • Continuous operating temperature of 200 °C.
  • Minimal temperature deviation: ±2 °C.
  • 10-32 tapped holes for custom terminal enclosure.
  • Compatible with proprietary mounting fixture.
  • Robust heater design to support long term continuous heating at 480 V in series .
  • Heater plate designed for ease of access and serviceability.


After generating all the necessary drawings and 3D models, BCE’s engineers successfully designed and manufactured a circular custom heater assembly to replace the customer’s original part. Custom tubular heaters were embedded into a machined aluminum ring. The positioning of the heater terminals were key to the ease of replacement and had to be carefully engineered.

With this new, improved design, BCE was able to increase heater performance and efficiency, as well as  guaranteeing  temperature uniformity to within 2 °C around the periphery. Additionally, BCE modified the heater terminal electrical insulation to adequately support 240V (480V in series). Finally, the aluminum ring enclosure was designed to allow fast and easy replacement of the tubular heating elements, reducing down time and lost production.

For more information, contact:

Sunday, March 31, 2019

New Epoxy Compounds Give Researchers and OEM's Design Freedom in Specifying Vacuum Feedthroughs

OEM feedthrough
OEMs can no get a feedthrough to fit their design criteria.
Scientists and researchers are constantly challenged to come up with better ways to read data in a vacuum environment. Traditional ceramic and glass-to-metal vacuum feedthroughs do not offer design flexibility. Unique control and data signals must pass through the wall. In addition to passing electrical power and control signals, fiber optic cables and pneumatic tubing may be included. Always changing variables, such as the number and types of connectors, unique geometries, and limited available space, make finding an off-the-shelf feedthrough difficult. This has traditionally forced designers to compromise and specify a feedthrough with some, but not all, of the desired specifications. 

epoxy feedthrough
Clear epoxy feedthrough with ribbon connector.
This reality has led to significant development gains in custom epoxy feedthrough. Epoxy feedthroughs overcome design constraints. New epoxy properties rivaling ceramic and glass performance have been developed. High performance, clear epoxy potting opens the door for researchers to specify the exact number and type of wires, optical fiber cables, or any other insert that they require. Epoxy feedthrough manufacturers can provide a virtually limitless variety of wires, cables, or tubes along with the added benefit of fast prototyping and small production runs — perfect for the research and manufacturing community. 

Flanged feedthrough
Flanged feedthrough with epoxy potted fiber optic cable.
With the development of custom epoxy feedthroughs medical device companies, analyzer manufacturers, laboratories, aerospace companies and other R&D facilities can design their equipment based on optimum size, cost and performance, and not be forced to compromise by the limitations of ceramic and glass-to-metal feedthrough. Because of the constant pressure on "better, faster, smaller" vacuum equipment researchers and OEM designers, it's clear that epoxy feedthroughs provide flexibility and options for more efficient and creative design.

For information on epoxy vacuum feedthroughs, contact: 

(510) 274-1990

Tuesday, March 26, 2019

Feedthroughs Used for Penetration of Vacuum and Pressure Vessels

Many types of OEM equipment, including medical, analytical, semiconductor, aerospace and laboratory test equipment, require a leak-proof penetration into a vacuum or pressure chamber. The device that accommodates this penetration is referred to as a feedthrough (sometimes spelled "feedthru"). For the most part feedthroughs allow electrical currents or voltages into the vacuum or pressurized area. There are also many other non-electrical requirements for pressure/vacuum vessel penetration. Some examples of non-electrical penetrations are fiber-optic, fluid tubing bundles, and process control sensors such as thermocouples.

Multi-pin Threaded or Flanged FeedthroughsMulti-pin Threaded or Flanged Feedthroughs

Multi-pin feedthroughs have circular flanged or threaded connectors for moderate pin density. They are typically offered with differing numbers of pins (often, 3, 5 or 7) and rated to 3.5 amps and 500 volts per pin. There are both single-ended and double-ended versions which offer a connector for the air side or both air and vacuum side connectors respectively.

Thermocouple FeedthroughsThermocouple Feedthroughs

A thermocouple feedthrough is an electrical vacuum feedthrough commonly used for systems involved in temperature measurement. The thermocouple feedthrough itself doesn’t measure temperature, but is used to conduct the voltage signal from the vacuum to an external device. These are suitable for use in ultra-high vacuum applications.

High Power FeedthroughsHigh Power Feedthroughs

High power electrical feedthroughs transmit high current and/or high voltage into a vacuum system. Variations of power electrical feedthroughs offer a range of current and voltage.

Epoxy Potted Feedthroughs
Epoxy Potted Feedthroughs

Epoxy vacuum feedthroughs offer the best application flexibility, they are cost competitive, and they have a high vacuum performance for today’s fast moving markets. Clear epoxy feedthroughs allow for the visual inspection of your components. They are board mountable with high vacuum performance and very competitive pricing compared to ceramic and metal seals.

Fiber Optic FeedthroughsFiber Optic Feedthroughs

Fiber Optic Feedthroughs provide the interface between fiber optics and UHV technology. They allow fiber optic cables are designed for vacuum applications requiring fiber optic connections from inside a vacuum system to external equipment.

Fluid FeedthroughsFluid Feedthroughs

Also referred to as fluid feedthroughs, they are designed for the transmission of gases or coolants into high and ultrahigh vacuum environments.  Generally constructed from 300 series stainless steel, they are available in single or multi-tube configurations.

Many accessories are available to be used in conjunction with the wide variety of vacuum feedthroughs. These included vacuum connectors, connectors, insulated wire, cable assemblies, insulators, and spacers, just to name a few.

Specialized feedthroughs may be needed if your application includes cryogenic or very low temperatures, high temperatures, aggressive chemicals, or high pressure. Contact an experienced manufacturer who specializes in vacuum feedthroughs to discuss which feedthrough will best meet your needs. A company worth their salt should be able to discern which would be the best fit with minimal hassle.