Showing posts with label medical equipment. Show all posts
Showing posts with label medical equipment. Show all posts

Electric In-line Clean Fluid Heater Provides On-demand Heat in a Small Package

clean fluid, flow-through heater
Clean fluid, flow-through heating system.
Many original equipment manufacturers require precise temperature control and a very compact package to heat clean fluids. Equipment examples are semiconductor gas processing equipment, kidney dialysis (hemodialysis) machines, process gas analyzers, ink preheating systems, photoresist coating equipment, and parts cleaning equipment.

Electric heaters used in these applications must be compact, lightweight, and made of materials that won't contaminate samples. They also must be fast responding and provide large amounts of power when required.

BCE, a Northern California manufacturer of custom electric heating elements, developed their "Mini Clean Flow" heater for these types of applications. The Mini Clean Flow is a very compact, fast responding electric heating element designed for applications where the heating of clean fluids is required, most often in the semiconductor, medical, and laboratory equipment industries. Designed with high power ratings wrapped in a small package, these specialized heaters offer ultra-fast heat-up and precise, accurate temperature control.

Mini Clean Flow heaters combine inlet and outlet connections along with a baffled stainless steel enclosure, creating a turbulent flow pattern for efficient heat transfer. Sealed resistance heaters are used to isolate process fluids from having contact with the elements directly. Internal thermocouples provide for outlet temperature regulation as well as for maximum sheath temperature control.  The Mini Clean Flow's advanced mechanical design, along with its high power density and overall low mass, provides the end-user with a very efficient and precise heating solution.

For more information, contact BCE.
Phone: 510-274-1990
Web: https://bcemfg.com/minicleanflow




Custom Electric Heating Elements

BCE designs and manufactures custom engineered heating solutions for analytical instrumentation, semiconductor, photovoltaic (solar), medical equipment, plastics processing, foodservice equipment, packaging, aerospace and many other industries.

Visit http://heater.belilove.com or call (510) 274-1990.

Ceramic Thick-Film Heaters for OEM Analytical and Medical Equipment

ceramic heating element
Ceramic heating element
Manufacturers of laboratory and process analytical equipment, as well as medical equipment, are continually challenged to make products smaller and more compact. Smaller, more efficient components are always in demand. Providing heat for sample stability or a chemical reaction is a common requirement. There's an ongoing challenge to find smaller and more efficient electric heaters.

Many traditional electrical heating elements are limited in size and efficiency due to the balance required between conductor temperatures and the the heat transfer properties of the dielectric material used in their construction. Sometimes the mass required to insulate electrically is at odds with the ability to drive the heat into the part.  Metal sheathed heaters use compacted magnesium oxide, or wafers of mica for dielectric. While these provide good electrical insulation, they also inhibit thermal transfer from resistance element to the external part. Flexible heating elements use a variety of rubbers or fluoropolymer elastomers that sandwich the resistance element. While these designs are dielectrically strong, and allow for excellent heat transfer, they are limited by the maximum operating temperatures and watt densities of the elastomer.

A newer, alternative technology is “thick-film” ceramic heaters, a process of depositing a resistor “trace” of tungsten paste on top of a ceramic part in a process very similar to screen printing. The deposition process allows for close control of thickness and width of the resistor, thus accurately controlling the conductor resistance, wattage, watt density, and uniformity of the heated part.

The use of ceramics as the heater body (referred to as a heated part), has many advantages. Ceramics are chemical inert, offer excellent thermal conductivity, impervious to moisture, and are very durable. The downside to using ceramics as heaters, however, is the difficulty in machining to very tight tolerances. In recent years though, many of the ceramic machining hurdles have been overcome through advanced ceramic machining processes.

In the early years of development thick-film ceramic heaters had a few major challenges. Dealing with mis-matched expansion coefficients between the ceramic substrate and the conductor trace was considerable. Years of research now have yielded excellent data on compatible materials making this problem much less significant. Another challenge is controlling the tolerance and repeatability of the heater resistance from part-to-part. Improvements and advancement in this area are made possible with laser etching, tighter screening procedures, and advanced machining.

The use of ceramics provided many interesting possibilities in heater design, and many materials were tested and researched. The most common ceramics used for thick-film heaters today are alumina (Al2O3), silicon nitride (Si3N4), beryllium oxide (BeO), and aluminum nitride (AlN). Each material has its own unique chemical and physical properties, but all exhibit good thermal conductivity and good dielectric properties.

The combination of excellent thermal conductivity, high dielectric, high watt densities, precise thermal profiling, and custom shapes and sizes that make thick-film ceramic heaters so attractive to equipment manufacturers. Providing more heat in smaller areas is easier than with traditional heaters. Additionally, some of the ceramics used are non-contaminating and moisture-proof, making them excellent candidates for clean and ultra-clean applications.

Ceramic thick-film heaters have many advantages over metal or elastomer sheathed heaters beyond just providing a more compact component. They are very fast acting, durable, moisture proof,  and contamination proof. They can be designed and machined to virtually any size or shape, watt density, voltage, and distributed wattage profile. While the initial design and prototyping requires investment in time and money, the resulting product can be mass produced economically and with repeatable accuracy and quality.

For more information, contact:
BCE
(510) 274-1990
www.belilove.com

Custom Heating Elements and Controls

custom heating element
Custom heating element.
Many types of industrial and manufacturing equipment, including analytical instrumentation, semiconductor, photovoltaic, medical, plastics processing, foodservice packaging, and aerospace equipment require some kind of custom electric heater, controller, and sensor.

For instance here, in semiconductor processing, you can find a need for electric heating in all these areas:  Bake platen heaters, bake/chill pedestal & platen heaters, hot chuck heaters, high temperature platen heaters, standard pedestal heaters, vacuum chamber heaters, and aluminum pedestal heaters.

A well engineered thermal system considers overall heat load, maintenance power requirements, control method, and sensor location. Working with a vendor who has the experience and background in this kind of product development is critical. Careful consideration of form, fit, and function requires the guidance an experienced applications engineer to avoid wasted time and money. 







Custom Epoxy Vacuum Feedthroughs

THE NEED
Equipment manufacturers and scientific researchers are continually challenged with supplying power, fiber-optic, control, and monitoring cables through sealed vacuum vessels. Whether due to space restrictions, special geometries, or number and type of conductors, standard glass-to-metal or ceramic feedthroughs never quite fit the bill. Unfortunately, because of limited options, many designers are forced to compromise and go for an off-the-shelf solution.

THE SOLUTION
During the past decade, new epoxy compounds have been developed that rival glass and ceramic in performance. With modern epoxy feedthroughs, any kind of standard or custom connector is sealed in a completely potted, high-performance, clear epoxy compound. Epoxy seals offer countless design options, and most amazingly, performance equal to or better than glass or ceramic. Better yet, pricing is very competitive and quick turn-around for prototypes and short production runs are not a problem.

Epoxy Electrical Feedthroughs: A Better Choice

Epoxy Electrical Feedthrough
Epoxy Electrical Feedthrough
One thing is for sure. You don’t want to scrap a $125,000 semiconductor wafer because dust or a contaminant gas exploited your process through a faulty electrical feedthrough.  In vacuum or pressurized conditions, getting process control signals and power to and from the work environment is always a challenge. Continually evolving specifications of vacuum requirements, or pressurized manufacturing conditions, push the design limits of electrical feedthroughs.  Failure of the feedthrough is not an option.

In applications requiring ultra-clean environments, feedthroughs are always a concern.  Historically, the product-of-choice for semiconductor manufacturing applications was glass-to-metal or ceramic seals. While providing an excellent seal, they are quite limited by geometry, size, electrical shielding, and fragility. Compounding these limitations, manufacturing requirements continue to evolve making it necessary to deliver more data, provide greater signal shielding, and provide higher power. With glass-to-metal and ceramic seals, this becomes very difficult, expensive, and many times, near impossible.

Enter epoxy feedthroughs. The epoxy materials available today make it fairly easy to design feedthroughs with curves and angles well beyond the capability of glass and ceramic. Epoxy feedthroughs can be applied in many shapes and sizes, provides an excellent seal, and accommodates shielded cable quite nicely.

In terms of cost, versatility, and availability, epoxy feedthroughs have a huge advantage. With manufacturing requirements pushing for smaller and more compact equipment, design versatility of the feedthrough is very important, and something that glass-to-metal feedthroughs can not match. Equipment design conditions often require special geometries of the connector, and using epoxy as the filler makes perfect sense.

Another outstanding advantage to epoxy electrical feedthroughs are in availability. Small production runs are easily and quickly accommodated for testing and proof-of-concept.

Ancillary cost savings of epoxy feedthroughs can be evaluated on design accommodation / size reduction, and on the ability to provide cable harnesses right up to the seal, which dramatically lowers production cost. Time consuming manufacturing processes, such as soldering connectors, is eliminated.

For the most part, epoxy electrical feedthroughs can fit the bill as a better alternative to glass-to-metal or ceramic feedthroughs. Very few exceptions exist, and usually center around concern of the organics in epoxy, but again, these issues are very limited.

For more information contact BCE.

Choose the Best Type of Vacuum Feedthrough for Your Application

Vacuum Feedthroughs
An electrical vacuum feedthrough (sometimes spelled "vacuum feedthru") is used to transfer electrical signals,  currents, or voltages into a vacuum. Because of the wide variety of feedthroughs, there are numerous categories available to meet the various needs provided by vacuum feedthroughs.

Multi-pin feedthroughs have circular threaded connectors for moderate pin density. They are typically offered with differing numbers of pins (often, 3, 5 or 7) and rated to 3.5 amps and 500 volts per pin. There are both single-ended and double-ended versions which offer a connector for the air side or both air and vacuum side connectors respectively.

Vacuum Feedthroughs
Epoxy Vacuum Feedthrough
custom manufactured by BCE
A thermocouple feedthrough is an electrical vacuum feedthrough commonly used for systems involved in temperature measurement. The thermocouple feedthrough itself doesn’t measure temperature, but is used to conduct the voltage signal from the vacuum to an external device. These are suitable for use in ultra-high vacuum applications. 

Power electrical feedthroughs transmit high current and/or high voltage into a vacuum system. Variations of power electrical feedthroughs offer a range of current and voltage.

Epoxy vacuum feedthroughs offer the best application flexibility, they are cost competitive, and they have a high vacuum performance for today’s fast moving markets. Clear epoxy feedthroughs allow for the visual inspection of your components. They are board mountable with high vacuum performance and very competitive pricing compared to ceramic and metal seals.

Many accessories are available to be used in conjunction with the wide variety of vacuum feedthroughs. These included vacuum connectors, connectors, insulated wire, cable assemblies, insulators, and spacers, just to name a few.

Specialized feedthroughs may be needed if your application includes cryogenic or very low temperatures, high temperatures, aggressive chemicals, or high pressure. Contact an experienced manufacturer who specializes in vacuum feedthroughs to discuss which feedthrough will best meet your needs. A company worth their salt should be able to discern which would be the best fit with minimal hassle.

Visit this link for more information on electrical vacuum feedthroughs.


When You Need a Custom Heating Element or Thermal System Design

OEMs often need custom designed heating elements for their equipment. Designing an electric heating element, or a complete thermal system, requires both electrical and mechanical engineering skills. Often, you can save time and money by calling in an expert with the proper experience to assist.

Belilove Company-Engineers has decades of experience developing custom thermal solutions in many industries - from low tech to cutting-edge high tech, from foodservice appliances to semiconductor processing equipment, Belilove has "been there, done that". So the next time you need an electric heating element, temperature sensor, or controller, Think Belilove.



Advantages of Epoxy Electrical Feedthroughs Over Glass-to-Metal and Ceramic Seals

epoxy vacuum feedthrough
Epoxy Electrical
Vacuum Feedthrough
Advances in semiconductor and medical device development has continually challenged manufacturing processes in ultra-clean environments. Getting power and control signals into high vacuum chambers has always been difficult. The vacuum seal has to be tight and not allow any contamination so that product quality is maintained.

Historically glass-to-metal seals for wire feedthroughs have been the choice in these industries, but are constrained in size, geometry, flexibility and electro-magnetic shielding. At the same time, semiconductor and medical device equipment have an increasing need for higher power, more control, better monitoring, and increased signal shielding. These ever changing requirements, which push the capability of glass-to-metal seals,  open up opportunity for an alternative technology - epoxy electrical vacuum feedthroughs.

Engineered epoxy electrical feedthroughs offer the best of all technologies. Shapes, angles and curves are not a problem. Virtually any kind of shielded wire or cable can be used and still maintain a tight seal. And as equipment design requirements continue to challenge vacuum seals with space and shielding requirements, the advantages of epoxy vacuum seals look to be a promising solution as the technology itself continues to advance.

While glass-to-metal feedthroughs have advantages in high temperature and corrosive applications, many of todays semiconductor and medical device applications don’t see these conditions. In these lower temperature, and non-corrosive applications, the lower cost, easy prototyping and more flexible design capability of epoxy feedthroughs make them very attractive alternatives.

The epoxy's ability to flow and fill spaces completely make it an excellent choice for any special shapes and sizes a vacuum chamber may require for access.  For the most part, epoxy feedthroughs can be used in most applications where glass-to-metal or ceramic feedthroughs are used (with the exception of temperature and corrosion issues outlined above). In some applications, organics are not allowed, and the epoxy feedthrough would be excluded from these as well.

One additional advantage is that custom epoxy vacuum feedthroughs can be quickly provided in very small quantities for prototyping and R&D.

For more information on epoxy feedthroughs, visit this page.

Advancements in Electric Resistance Heaters - Ceramic Heating Elements

Aluminum nitride, high performance electric heating elements using Tungsten traces on ALN. Product manufactured by Durex and Oasis Materials.
  • Power Densities up to 2500 Watts per square inch
  • 0-400ยบ C in a quarter of a second
  • Extreme temperature uniformity
  • Inert in acidic solutions
  • Custom line widths and resistance values available
  • Encapsulated Tungsten RTD trace
  • 3D shapes and configurations
  • Thermal conductivity of Oasis' Aluminum Nitride (ALN) is 190 W/mK
  • Thermal conductivity of pure tungsten is 170 W/mK